Copied to
clipboard

G = C11×C22.D4order 352 = 25·11

Direct product of C11 and C22.D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C11×C22.D4, C4⋊C44C22, C2.7(D4×C22), C22⋊C44C22, (C22×C4)⋊3C22, (C22×C44)⋊5C2, (C2×D4).4C22, C22.70(C2×D4), (C2×C22).23D4, (D4×C22).11C2, C22.4(D4×C11), C22.43(C4○D4), (C2×C44).65C22, C23.10(C2×C22), (C2×C22).78C23, (C22×C22).29C22, C22.13(C22×C22), (C11×C4⋊C4)⋊13C2, (C2×C4).5(C2×C22), C2.6(C11×C4○D4), (C11×C22⋊C4)⋊12C2, SmallGroup(352,158)

Series: Derived Chief Lower central Upper central

C1C22 — C11×C22.D4
C1C2C22C2×C22C22×C22D4×C22 — C11×C22.D4
C1C22 — C11×C22.D4
C1C2×C22 — C11×C22.D4

Generators and relations for C11×C22.D4
 G = < a,b,c,d,e | a11=b2=c2=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=ebe=bc=cb, cd=dc, ce=ec, ede=cd-1 >

Subgroups: 116 in 78 conjugacy classes, 44 normal (20 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, C23, C11, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C22, C22, C22, C22.D4, C44, C2×C22, C2×C22, C2×C22, C2×C44, C2×C44, C2×C44, D4×C11, C22×C22, C11×C22⋊C4, C11×C22⋊C4, C11×C4⋊C4, C22×C44, D4×C22, C11×C22.D4
Quotients: C1, C2, C22, D4, C23, C11, C2×D4, C4○D4, C22, C22.D4, C2×C22, D4×C11, C22×C22, D4×C22, C11×C4○D4, C11×C22.D4

Smallest permutation representation of C11×C22.D4
On 176 points
Generators in S176
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120 121)(122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143)(144 145 146 147 148 149 150 151 152 153 154)(155 156 157 158 159 160 161 162 163 164 165)(166 167 168 169 170 171 172 173 174 175 176)
(1 134)(2 135)(3 136)(4 137)(5 138)(6 139)(7 140)(8 141)(9 142)(10 143)(11 133)(12 102)(13 103)(14 104)(15 105)(16 106)(17 107)(18 108)(19 109)(20 110)(21 100)(22 101)(23 94)(24 95)(25 96)(26 97)(27 98)(28 99)(29 89)(30 90)(31 91)(32 92)(33 93)(34 84)(35 85)(36 86)(37 87)(38 88)(39 78)(40 79)(41 80)(42 81)(43 82)(44 83)(45 163)(46 164)(47 165)(48 155)(49 156)(50 157)(51 158)(52 159)(53 160)(54 161)(55 162)(56 154)(57 144)(58 145)(59 146)(60 147)(61 148)(62 149)(63 150)(64 151)(65 152)(66 153)(67 126)(68 127)(69 128)(70 129)(71 130)(72 131)(73 132)(74 122)(75 123)(76 124)(77 125)(111 170)(112 171)(113 172)(114 173)(115 174)(116 175)(117 176)(118 166)(119 167)(120 168)(121 169)
(1 45)(2 46)(3 47)(4 48)(5 49)(6 50)(7 51)(8 52)(9 53)(10 54)(11 55)(12 37)(13 38)(14 39)(15 40)(16 41)(17 42)(18 43)(19 44)(20 34)(21 35)(22 36)(23 171)(24 172)(25 173)(26 174)(27 175)(28 176)(29 166)(30 167)(31 168)(32 169)(33 170)(56 69)(57 70)(58 71)(59 72)(60 73)(61 74)(62 75)(63 76)(64 77)(65 67)(66 68)(78 104)(79 105)(80 106)(81 107)(82 108)(83 109)(84 110)(85 100)(86 101)(87 102)(88 103)(89 118)(90 119)(91 120)(92 121)(93 111)(94 112)(95 113)(96 114)(97 115)(98 116)(99 117)(122 148)(123 149)(124 150)(125 151)(126 152)(127 153)(128 154)(129 144)(130 145)(131 146)(132 147)(133 162)(134 163)(135 164)(136 165)(137 155)(138 156)(139 157)(140 158)(141 159)(142 160)(143 161)
(1 79 75 90)(2 80 76 91)(3 81 77 92)(4 82 67 93)(5 83 68 94)(6 84 69 95)(7 85 70 96)(8 86 71 97)(9 87 72 98)(10 88 73 99)(11 78 74 89)(12 131 175 142)(13 132 176 143)(14 122 166 133)(15 123 167 134)(16 124 168 135)(17 125 169 136)(18 126 170 137)(19 127 171 138)(20 128 172 139)(21 129 173 140)(22 130 174 141)(23 156 44 153)(24 157 34 154)(25 158 35 144)(26 159 36 145)(27 160 37 146)(28 161 38 147)(29 162 39 148)(30 163 40 149)(31 164 41 150)(32 165 42 151)(33 155 43 152)(45 105 62 119)(46 106 63 120)(47 107 64 121)(48 108 65 111)(49 109 66 112)(50 110 56 113)(51 100 57 114)(52 101 58 115)(53 102 59 116)(54 103 60 117)(55 104 61 118)
(12 175)(13 176)(14 166)(15 167)(16 168)(17 169)(18 170)(19 171)(20 172)(21 173)(22 174)(23 44)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(31 41)(32 42)(33 43)(78 118)(79 119)(80 120)(81 121)(82 111)(83 112)(84 113)(85 114)(86 115)(87 116)(88 117)(89 104)(90 105)(91 106)(92 107)(93 108)(94 109)(95 110)(96 100)(97 101)(98 102)(99 103)(122 148)(123 149)(124 150)(125 151)(126 152)(127 153)(128 154)(129 144)(130 145)(131 146)(132 147)(133 162)(134 163)(135 164)(136 165)(137 155)(138 156)(139 157)(140 158)(141 159)(142 160)(143 161)

G:=sub<Sym(176)| (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120,121)(122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143)(144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165)(166,167,168,169,170,171,172,173,174,175,176), (1,134)(2,135)(3,136)(4,137)(5,138)(6,139)(7,140)(8,141)(9,142)(10,143)(11,133)(12,102)(13,103)(14,104)(15,105)(16,106)(17,107)(18,108)(19,109)(20,110)(21,100)(22,101)(23,94)(24,95)(25,96)(26,97)(27,98)(28,99)(29,89)(30,90)(31,91)(32,92)(33,93)(34,84)(35,85)(36,86)(37,87)(38,88)(39,78)(40,79)(41,80)(42,81)(43,82)(44,83)(45,163)(46,164)(47,165)(48,155)(49,156)(50,157)(51,158)(52,159)(53,160)(54,161)(55,162)(56,154)(57,144)(58,145)(59,146)(60,147)(61,148)(62,149)(63,150)(64,151)(65,152)(66,153)(67,126)(68,127)(69,128)(70,129)(71,130)(72,131)(73,132)(74,122)(75,123)(76,124)(77,125)(111,170)(112,171)(113,172)(114,173)(115,174)(116,175)(117,176)(118,166)(119,167)(120,168)(121,169), (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,37)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,34)(21,35)(22,36)(23,171)(24,172)(25,173)(26,174)(27,175)(28,176)(29,166)(30,167)(31,168)(32,169)(33,170)(56,69)(57,70)(58,71)(59,72)(60,73)(61,74)(62,75)(63,76)(64,77)(65,67)(66,68)(78,104)(79,105)(80,106)(81,107)(82,108)(83,109)(84,110)(85,100)(86,101)(87,102)(88,103)(89,118)(90,119)(91,120)(92,121)(93,111)(94,112)(95,113)(96,114)(97,115)(98,116)(99,117)(122,148)(123,149)(124,150)(125,151)(126,152)(127,153)(128,154)(129,144)(130,145)(131,146)(132,147)(133,162)(134,163)(135,164)(136,165)(137,155)(138,156)(139,157)(140,158)(141,159)(142,160)(143,161), (1,79,75,90)(2,80,76,91)(3,81,77,92)(4,82,67,93)(5,83,68,94)(6,84,69,95)(7,85,70,96)(8,86,71,97)(9,87,72,98)(10,88,73,99)(11,78,74,89)(12,131,175,142)(13,132,176,143)(14,122,166,133)(15,123,167,134)(16,124,168,135)(17,125,169,136)(18,126,170,137)(19,127,171,138)(20,128,172,139)(21,129,173,140)(22,130,174,141)(23,156,44,153)(24,157,34,154)(25,158,35,144)(26,159,36,145)(27,160,37,146)(28,161,38,147)(29,162,39,148)(30,163,40,149)(31,164,41,150)(32,165,42,151)(33,155,43,152)(45,105,62,119)(46,106,63,120)(47,107,64,121)(48,108,65,111)(49,109,66,112)(50,110,56,113)(51,100,57,114)(52,101,58,115)(53,102,59,116)(54,103,60,117)(55,104,61,118), (12,175)(13,176)(14,166)(15,167)(16,168)(17,169)(18,170)(19,171)(20,172)(21,173)(22,174)(23,44)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(31,41)(32,42)(33,43)(78,118)(79,119)(80,120)(81,121)(82,111)(83,112)(84,113)(85,114)(86,115)(87,116)(88,117)(89,104)(90,105)(91,106)(92,107)(93,108)(94,109)(95,110)(96,100)(97,101)(98,102)(99,103)(122,148)(123,149)(124,150)(125,151)(126,152)(127,153)(128,154)(129,144)(130,145)(131,146)(132,147)(133,162)(134,163)(135,164)(136,165)(137,155)(138,156)(139,157)(140,158)(141,159)(142,160)(143,161)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120,121)(122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143)(144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165)(166,167,168,169,170,171,172,173,174,175,176), (1,134)(2,135)(3,136)(4,137)(5,138)(6,139)(7,140)(8,141)(9,142)(10,143)(11,133)(12,102)(13,103)(14,104)(15,105)(16,106)(17,107)(18,108)(19,109)(20,110)(21,100)(22,101)(23,94)(24,95)(25,96)(26,97)(27,98)(28,99)(29,89)(30,90)(31,91)(32,92)(33,93)(34,84)(35,85)(36,86)(37,87)(38,88)(39,78)(40,79)(41,80)(42,81)(43,82)(44,83)(45,163)(46,164)(47,165)(48,155)(49,156)(50,157)(51,158)(52,159)(53,160)(54,161)(55,162)(56,154)(57,144)(58,145)(59,146)(60,147)(61,148)(62,149)(63,150)(64,151)(65,152)(66,153)(67,126)(68,127)(69,128)(70,129)(71,130)(72,131)(73,132)(74,122)(75,123)(76,124)(77,125)(111,170)(112,171)(113,172)(114,173)(115,174)(116,175)(117,176)(118,166)(119,167)(120,168)(121,169), (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,37)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,34)(21,35)(22,36)(23,171)(24,172)(25,173)(26,174)(27,175)(28,176)(29,166)(30,167)(31,168)(32,169)(33,170)(56,69)(57,70)(58,71)(59,72)(60,73)(61,74)(62,75)(63,76)(64,77)(65,67)(66,68)(78,104)(79,105)(80,106)(81,107)(82,108)(83,109)(84,110)(85,100)(86,101)(87,102)(88,103)(89,118)(90,119)(91,120)(92,121)(93,111)(94,112)(95,113)(96,114)(97,115)(98,116)(99,117)(122,148)(123,149)(124,150)(125,151)(126,152)(127,153)(128,154)(129,144)(130,145)(131,146)(132,147)(133,162)(134,163)(135,164)(136,165)(137,155)(138,156)(139,157)(140,158)(141,159)(142,160)(143,161), (1,79,75,90)(2,80,76,91)(3,81,77,92)(4,82,67,93)(5,83,68,94)(6,84,69,95)(7,85,70,96)(8,86,71,97)(9,87,72,98)(10,88,73,99)(11,78,74,89)(12,131,175,142)(13,132,176,143)(14,122,166,133)(15,123,167,134)(16,124,168,135)(17,125,169,136)(18,126,170,137)(19,127,171,138)(20,128,172,139)(21,129,173,140)(22,130,174,141)(23,156,44,153)(24,157,34,154)(25,158,35,144)(26,159,36,145)(27,160,37,146)(28,161,38,147)(29,162,39,148)(30,163,40,149)(31,164,41,150)(32,165,42,151)(33,155,43,152)(45,105,62,119)(46,106,63,120)(47,107,64,121)(48,108,65,111)(49,109,66,112)(50,110,56,113)(51,100,57,114)(52,101,58,115)(53,102,59,116)(54,103,60,117)(55,104,61,118), (12,175)(13,176)(14,166)(15,167)(16,168)(17,169)(18,170)(19,171)(20,172)(21,173)(22,174)(23,44)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(31,41)(32,42)(33,43)(78,118)(79,119)(80,120)(81,121)(82,111)(83,112)(84,113)(85,114)(86,115)(87,116)(88,117)(89,104)(90,105)(91,106)(92,107)(93,108)(94,109)(95,110)(96,100)(97,101)(98,102)(99,103)(122,148)(123,149)(124,150)(125,151)(126,152)(127,153)(128,154)(129,144)(130,145)(131,146)(132,147)(133,162)(134,163)(135,164)(136,165)(137,155)(138,156)(139,157)(140,158)(141,159)(142,160)(143,161) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120,121),(122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143),(144,145,146,147,148,149,150,151,152,153,154),(155,156,157,158,159,160,161,162,163,164,165),(166,167,168,169,170,171,172,173,174,175,176)], [(1,134),(2,135),(3,136),(4,137),(5,138),(6,139),(7,140),(8,141),(9,142),(10,143),(11,133),(12,102),(13,103),(14,104),(15,105),(16,106),(17,107),(18,108),(19,109),(20,110),(21,100),(22,101),(23,94),(24,95),(25,96),(26,97),(27,98),(28,99),(29,89),(30,90),(31,91),(32,92),(33,93),(34,84),(35,85),(36,86),(37,87),(38,88),(39,78),(40,79),(41,80),(42,81),(43,82),(44,83),(45,163),(46,164),(47,165),(48,155),(49,156),(50,157),(51,158),(52,159),(53,160),(54,161),(55,162),(56,154),(57,144),(58,145),(59,146),(60,147),(61,148),(62,149),(63,150),(64,151),(65,152),(66,153),(67,126),(68,127),(69,128),(70,129),(71,130),(72,131),(73,132),(74,122),(75,123),(76,124),(77,125),(111,170),(112,171),(113,172),(114,173),(115,174),(116,175),(117,176),(118,166),(119,167),(120,168),(121,169)], [(1,45),(2,46),(3,47),(4,48),(5,49),(6,50),(7,51),(8,52),(9,53),(10,54),(11,55),(12,37),(13,38),(14,39),(15,40),(16,41),(17,42),(18,43),(19,44),(20,34),(21,35),(22,36),(23,171),(24,172),(25,173),(26,174),(27,175),(28,176),(29,166),(30,167),(31,168),(32,169),(33,170),(56,69),(57,70),(58,71),(59,72),(60,73),(61,74),(62,75),(63,76),(64,77),(65,67),(66,68),(78,104),(79,105),(80,106),(81,107),(82,108),(83,109),(84,110),(85,100),(86,101),(87,102),(88,103),(89,118),(90,119),(91,120),(92,121),(93,111),(94,112),(95,113),(96,114),(97,115),(98,116),(99,117),(122,148),(123,149),(124,150),(125,151),(126,152),(127,153),(128,154),(129,144),(130,145),(131,146),(132,147),(133,162),(134,163),(135,164),(136,165),(137,155),(138,156),(139,157),(140,158),(141,159),(142,160),(143,161)], [(1,79,75,90),(2,80,76,91),(3,81,77,92),(4,82,67,93),(5,83,68,94),(6,84,69,95),(7,85,70,96),(8,86,71,97),(9,87,72,98),(10,88,73,99),(11,78,74,89),(12,131,175,142),(13,132,176,143),(14,122,166,133),(15,123,167,134),(16,124,168,135),(17,125,169,136),(18,126,170,137),(19,127,171,138),(20,128,172,139),(21,129,173,140),(22,130,174,141),(23,156,44,153),(24,157,34,154),(25,158,35,144),(26,159,36,145),(27,160,37,146),(28,161,38,147),(29,162,39,148),(30,163,40,149),(31,164,41,150),(32,165,42,151),(33,155,43,152),(45,105,62,119),(46,106,63,120),(47,107,64,121),(48,108,65,111),(49,109,66,112),(50,110,56,113),(51,100,57,114),(52,101,58,115),(53,102,59,116),(54,103,60,117),(55,104,61,118)], [(12,175),(13,176),(14,166),(15,167),(16,168),(17,169),(18,170),(19,171),(20,172),(21,173),(22,174),(23,44),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(31,41),(32,42),(33,43),(78,118),(79,119),(80,120),(81,121),(82,111),(83,112),(84,113),(85,114),(86,115),(87,116),(88,117),(89,104),(90,105),(91,106),(92,107),(93,108),(94,109),(95,110),(96,100),(97,101),(98,102),(99,103),(122,148),(123,149),(124,150),(125,151),(126,152),(127,153),(128,154),(129,144),(130,145),(131,146),(132,147),(133,162),(134,163),(135,164),(136,165),(137,155),(138,156),(139,157),(140,158),(141,159),(142,160),(143,161)]])

154 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G11A···11J22A···22AD22AE···22AX22AY···22BH44A···44AN44AO···44BR
order1222222444444411···1122···2222···2222···2244···4444···44
size111122422224441···11···12···24···42···24···4

154 irreducible representations

dim11111111112222
type++++++
imageC1C2C2C2C2C11C22C22C22C22D4C4○D4D4×C11C11×C4○D4
kernelC11×C22.D4C11×C22⋊C4C11×C4⋊C4C22×C44D4×C22C22.D4C22⋊C4C4⋊C4C22×C4C2×D4C2×C22C22C22C2
# reps132111030201010242040

Matrix representation of C11×C22.D4 in GL4(𝔽89) generated by

4000
0400
00670
00067
,
1000
0100
00242
002465
,
1000
0100
00880
00088
,
08800
1000
00550
001534
,
1000
08800
0010
006588
G:=sub<GL(4,GF(89))| [4,0,0,0,0,4,0,0,0,0,67,0,0,0,0,67],[1,0,0,0,0,1,0,0,0,0,24,24,0,0,2,65],[1,0,0,0,0,1,0,0,0,0,88,0,0,0,0,88],[0,1,0,0,88,0,0,0,0,0,55,15,0,0,0,34],[1,0,0,0,0,88,0,0,0,0,1,65,0,0,0,88] >;

C11×C22.D4 in GAP, Magma, Sage, TeX

C_{11}\times C_2^2.D_4
% in TeX

G:=Group("C11xC2^2.D4");
// GroupNames label

G:=SmallGroup(352,158);
// by ID

G=gap.SmallGroup(352,158);
# by ID

G:=PCGroup([6,-2,-2,-2,-11,-2,-2,1081,3242,410]);
// Polycyclic

G:=Group<a,b,c,d,e|a^11=b^2=c^2=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=e*b*e=b*c=c*b,c*d=d*c,c*e=e*c,e*d*e=c*d^-1>;
// generators/relations

׿
×
𝔽